Hausdorff towers and gaps

Piotr Borodulin-Nadzieja

Winterschool 2013, Hejnice

joint work with David Chodounsky

Piotr Borodulin-Nadzieja

Hausdorff towers and gaps

Motiv	vation	Hausdorff towers	Suslin towers	Special and Hausdorff C	aps
10	wer.				
	Tower				
	We say that	$(T_{lpha})_{lpha<\omega_1}$ is a <i>to</i>	<i>wer</i> if		
	$ T_{\alpha} \subseteq \omega$	for each α ;			
	$\blacksquare \ T_{\alpha} \setminus T_{\beta}$	$_{3}$ is finite ($\mathcal{T}_{lpha}\subseteq^{*}$	T_{β}) iff $\alpha < \beta$.		

Piotr Borodulin-Nadzieja

Motiv	vation	Hausdorff towers	Suslin towers	Special and Hausdorff Gaps
То	wer.			
	Tower			
	We say that	$(T_{lpha})_{lpha<\omega_1}$ is a tc	ower if	
	$\bullet \ T_{\alpha} \subseteq \omega$	for each α ;		
	$\blacksquare T_{lpha} \setminus T_{eta}$	$_{\scriptscriptstyle B}$ is finite ($\mathcal{T}_{lpha} \subseteq^*$	T_{β}) iff $\alpha < \beta$.	

Piotr Borodulin-Nadzieja

Motivation		
Tower.		
Tower		

We say that $(T_{\alpha})_{\alpha < \omega_1}$ is a *tower* if

- $T_{\alpha} \subseteq \omega$ for each α ;
- $T_{\alpha} \setminus T_{\beta}$ is finite $(T_{\alpha} \subseteq^* T_{\beta})$ iff $\alpha < \beta$.

Piotr Borodulin-Nadzieja

Motivation		
Tower.		
Tower		

We say that $(T_{\alpha})_{\alpha < \omega_1}$ is a *tower* if

- $T_{\alpha} \subseteq \omega$ for each α ;
- $T_{\alpha} \setminus T_{\beta}$ is finite $(T_{\alpha} \subseteq^* T_{\beta})$ iff $\alpha < \beta$.

Piotr Borodulin-Nadzieja

Winterschool 2013, Hejnice

Question 1

Is there a tower $(T_{\alpha})_{\alpha}$ such that $T_{\alpha} \nsubseteq T_{\beta}$ for each $\alpha < \beta$?

Question 1 reformulated

```
Is there an uncountable family \mathcal{T} \subseteq [\omega]^{\omega} such that

(\mathcal{T}, \subseteq^*) is well-ordered;
```

•
$$(\mathcal{T},\subseteq)$$
 is an antichain?

Winterschool 2013, Hejnice

Piotr Borodulin-Nadzieja

Motivation		
Question 1		

Question 1

Is there a tower $(T_{\alpha})_{\alpha}$ such that $T_{\alpha} \nsubseteq T_{\beta}$ for each $\alpha < \beta$?

Question 1 reformulated

Is there an uncountable family $\mathcal{T} \subseteq [\omega]^\omega$ such that

- $(\mathcal{T}, \subseteq^*)$ is well-ordered;
- (\mathcal{T},\subseteq) is an antichain?

Winterschool 2013, Hejnice

Piotr Borodulin-Nadzieja

Question 1.

Question 1

Is there a tower $(T_{\alpha})_{\alpha}$ such that $T_{\alpha} \nsubseteq T_{\beta}$ for each $\alpha < \beta$?

Question 1 reformulated

Is there an uncountable family $\mathcal{T} \subseteq [\omega]^\omega$ such that

$$(\mathcal{T},\subseteq^*)$$
 is well-ordered;

•
$$(\mathcal{T},\subseteq)$$
 is an antichain?

Piotr Borodulin-Nadzieja

Question 1.

Question 1

Is there a tower $(T_{\alpha})_{\alpha}$ such that $T_{\alpha} \nsubseteq T_{\beta}$ for each $\alpha < \beta$?

Question 1 reformulated

Is there an uncountable family $\mathcal{T} \subseteq [\omega]^\omega$ such that

$$(\mathcal{T},\subseteq^*)$$
 is well-ordered;

•
$$(\mathcal{T},\subseteq)$$
 is an antichain?

Piotr Borodulin-Nadzieja

Motivation		
Oursetien 1		

Question 1

Is there a tower $(T_{\alpha})_{\alpha}$ such that $T_{\alpha} \nsubseteq T_{\beta}$ for each $\alpha < \beta$?

Definition: gap

A family $(L_{\alpha}, R_{\alpha})_{\alpha < \omega_1}$ is a *gap* if

- (L_{α}) $_{\alpha}$ and $(R_{\alpha})_{\alpha}$ are towers;
- $L_{\alpha} \cap R_{\alpha} = \emptyset$ for each α ;
- there is no $L \subseteq \omega$ s.t. $L_{\alpha} \subseteq^* L$ and $R_{\alpha} \cap L =^* \emptyset$ for each α .

Winterschool 2013, Hejnice

Piotr Borodulin-Nadzieja

Motivation		

Question 1

Is there a tower $(T_{\alpha})_{\alpha}$ such that $T_{\alpha} \nsubseteq T_{\beta}$ for each $\alpha < \beta$?

Definition: gap

A family $(L_{\alpha}, R_{\alpha})_{\alpha < \omega_1}$ is a gap if

- $(L_{lpha})_{lpha}$ and $(R_{lpha})_{lpha}$ are towers;
- $L_{\alpha} \cap R_{\alpha} = \emptyset$ for each α ;
- there is no $L \subseteq \omega$ s.t. $L_{\alpha} \subseteq^* L$ and $R_{\alpha} \cap L =^* \emptyset$ for each α .

Winterschool 2013, Hejnice

Piotr Borodulin-Nadzieja

Motivation		

Question 1

Is there a tower $(T_{\alpha})_{\alpha}$ such that $T_{\alpha} \nsubseteq T_{\beta}$ for each $\alpha < \beta$?

Definition: gap

A family $(L_{\alpha}, R_{\alpha})_{\alpha < \omega_1}$ is a gap if

- $(L_{\alpha})_{\alpha}$ and $(R_{\alpha})_{\alpha}$ are towers;
- $L_{\alpha} \cap R_{\alpha} = \emptyset$ for each α ;
- there is no $L \subseteq \omega$ s.t. $L_{\alpha} \subseteq^* L$ and $R_{\alpha} \cap L =^* \emptyset$ for each α .

Winterschool 2013, Hejnice

Piotr Borodulin-Nadzieja

Motivation		
Question 1		

Ourset's a 1

Is there a tower $(T_{\alpha})_{\alpha}$ such that $T_{\alpha} \nsubseteq T_{\beta}$ for each $\alpha < \beta$?

Definition: gap

A family $(L_{\alpha}, R_{\alpha})_{\alpha < \omega_1}$ is a gap if

$$(L_{lpha})_{lpha}$$
 and $(R_{lpha})_{lpha}$ are towers;

•
$$L_{\alpha} \cap R_{\alpha} = \emptyset$$
 for each α ;

• there is no $L \subseteq \omega$ s.t. $L_{\alpha} \subseteq^* L$ and $R_{\alpha} \cap L =^* \emptyset$ for each α .

Winterschool 2013, Hejnice

Piotr Borodulin-Nadzieja

Motivation		

Question 1

Is there a tower $(T_{\alpha})_{\alpha}$ such that $T_{\alpha} \nsubseteq T_{\beta}$ for each $\alpha < \beta$?

Definition: gap

A family $(L_{\alpha}, R_{\alpha})_{\alpha < \omega_1}$ is a gap if

$$(L_{lpha})_{lpha}$$
 and $(R_{lpha})_{lpha}$ are towers;

•
$$L_{\alpha} \cap R_{\alpha} = \emptyset$$
 for each α ;

• there is no $L \subseteq \omega$ s.t. $L_{\alpha} \subseteq^* L$ and $R_{\alpha} \cap L =^* \emptyset$ for each α .

Winterschool 2013, Hejnice

Piotr Borodulin-Nadzieja

Motivation		
Question		

Question 1

Is there a tower $(T_{\alpha})_{\alpha}$ such that $T_{\alpha} \nsubseteq T_{\beta}$ for each $\alpha < \beta$?

Definition: Hausdorff gap

A family $(L_{\alpha}, R_{\alpha})_{\alpha < \omega_1}$ is a gap if

$$(L_{lpha})_{lpha}$$
 and $(R_{lpha})_{lpha}$ are towers;

•
$$L_{\alpha} \cap R_{\alpha} = \emptyset$$
 for each α ;

$$= \{\beta < \alpha \colon L_{\beta} \cap R_{\alpha} \subseteq n\} \text{ is finite for each } n \in \omega \text{ and } \alpha < \omega_{1}.$$

Winterschool 2013, Hejnice

Piotr Borodulin-Nadzieja

Answer to Question 1 (S. Todorčević).

Let $(L_{\alpha}, R_{\alpha})_{\alpha}$ be a Hausdorff gap. Define $f(dom(f) = \omega_1)$:

$$f(\alpha) = \{\beta < \alpha \colon L_{\beta} \cap R_{\alpha} = \emptyset\}.$$

Hausdorff condition $\implies f: \omega_1 \to [\omega_1]^{<\omega};$

f is a set-mapping (i.e. $\alpha \notin f(\alpha)$);

Free-set theorem \implies there is $\Lambda \subseteq \omega_1$, $|\Lambda| = \omega_1$ such that

 $\alpha \notin f(\beta)$ for each $\alpha, \beta \in \Lambda$;

If
$$L_{\beta} \cap R_{\alpha} \neq \emptyset$$
 then $L_{\beta} \setminus L_{\alpha} \neq \emptyset$;
Finally: $L_{\alpha} \not\subset L_{\beta}$ for each $\alpha \leq \beta \in \Lambda$

Piotr Borodulin-Nadzieja

Answer to Question 1 (S. Todorčević).

Let $(L_{\alpha}, R_{\alpha})_{\alpha}$ be a Hausdorff gap. Define $f(dom(f) = \omega_1)$:

$$f(\alpha) = \{\beta < \alpha \colon L_{\beta} \cap R_{\alpha} = \emptyset\}.$$

Hausdorff condition $\implies f: \omega_1 \to [\omega_1]^{<\omega};$

f is a set-mapping (i.e. $\alpha \notin f(\alpha)$);

Free-set theorem \implies there is $\Lambda \subseteq \omega_1$, $|\Lambda| = \omega_1$ such that

 $\alpha \notin f(\beta)$ for each $\alpha, \beta \in \Lambda$;

If
$$L_{\beta} \cap R_{\alpha} \neq \emptyset$$
 then $L_{\beta} \setminus L_{\alpha} \neq \emptyset$;
Finally: $L_{\alpha} \not\subset L_{\beta}$ for each $\alpha \leq \beta \in \Lambda$

Piotr Borodulin-Nadzieja

Answer to Question 1 (S. Todorčević).

Let $(L_{\alpha}, R_{\alpha})_{\alpha}$ be a Hausdorff gap. Define $f(dom(f) = \omega_1)$:

$$f(\alpha) = \{\beta < \alpha \colon L_{\beta} \cap R_{\alpha} = \emptyset\}.$$

- Hausdorff condition $\implies f: \omega_1 \to [\omega_1]^{<\omega}$;
- f is a set-mapping (i.e. $\alpha \notin f(\alpha)$);

Free-set theorem \implies there is $\Lambda \subseteq \omega_1$, $|\Lambda| = \omega_1$ such that

 $\alpha \notin f(\beta)$ for each $\alpha, \beta \in \Lambda$;

Piotr Borodulin-Nadzieja

Answer to Question 1 (S. Todorčević).

Let $(L_{\alpha}, R_{\alpha})_{\alpha}$ be a Hausdorff gap. Define $f(dom(f) = \omega_1)$:

$$f(\alpha) = \{\beta < \alpha \colon L_{\beta} \cap R_{\alpha} = \emptyset\}.$$

- Hausdorff condition $\implies f: \omega_1 \to [\omega_1]^{<\omega}$;
- f is a set-mapping (i.e. $\alpha \notin f(\alpha)$);

Free-set theorem \implies there is $\Lambda \subseteq \omega_1$, $|\Lambda| = \omega_1$ such that

 $\alpha \notin f(\beta)$ for each $\alpha, \beta \in \Lambda$;

If
$$L_{\beta} \cap R_{\alpha} \neq \emptyset$$
 then $L_{\beta} \setminus L_{\alpha} \neq \emptyset$;

Piotr Borodulin-Nadzieja

Hausdorff towers and gaps

Answer to Question 1 (S. Todorčević).

Let $(L_{\alpha}, R_{\alpha})_{\alpha}$ be a Hausdorff gap. Define $f(dom(f) = \omega_1)$:

$$f(\alpha) = \{\beta < \alpha \colon L_{\beta} \cap R_{\alpha} = \emptyset\}.$$

Hausdorff condition $\implies f: \omega_1 \to [\omega_1]^{<\omega}$;

• f is a set-mapping (i.e. $\alpha \notin f(\alpha)$);

Free-set theorem \implies there is $\Lambda \subseteq \omega_1$, $|\Lambda| = \omega_1$ such that

 $\alpha \notin f(\beta)$ for each $\alpha, \beta \in \Lambda$;

Piotr Borodulin-Nadzieja

Answer to Question 1 (S. Todorčević).

Let $(L_{\alpha}, R_{\alpha})_{\alpha}$ be a Hausdorff gap. Define $f(dom(f) = \omega_1)$:

$$f(\alpha) = \{\beta < \alpha \colon L_{\beta} \cap R_{\alpha} = \emptyset\}.$$

Hausdorff condition $\implies f: \omega_1 \to [\omega_1]^{<\omega}$;

• f is a set-mapping (i.e. $\alpha \notin f(\alpha)$);

Free-set theorem \implies there is $\Lambda \subseteq \omega_1$, $|\Lambda| = \omega_1$ such that

 $\alpha \notin f(\beta)$ for each $\alpha, \beta \in \Lambda$;

• If
$$L_{\beta} \cap R_{\alpha} \neq \emptyset$$
 then $L_{\beta} \setminus L_{\alpha} \neq \emptyset$;

Finally: $L_{\alpha} \nsubseteq L_{\beta}$ for each $\alpha < \beta \in \Lambda$.

Piotr Borodulin-Nadzieja

Answer to Question 1 (S. Todorčević).

Let $(L_{\alpha}, R_{\alpha})_{\alpha}$ be a Hausdorff gap. Define $f(dom(f) = \omega_1)$:

$$f(\alpha) = \{\beta < \alpha \colon L_{\beta} \cap R_{\alpha} = \emptyset\}.$$

Hausdorff condition $\implies f: \omega_1 \to [\omega_1]^{<\omega}$;

• f is a set-mapping (i.e. $\alpha \notin f(\alpha)$);

Free-set theorem \implies there is $\Lambda \subseteq \omega_1$, $|\Lambda| = \omega_1$ such that

 $\alpha \notin f(\beta)$ for each $\alpha, \beta \in \Lambda$;

If
$$L_{\beta} \cap R_{\alpha} \neq \emptyset$$
 then $L_{\beta} \setminus L_{\alpha} \neq \emptyset$;
Finally: $L_{\alpha} \nsubseteq L_{\beta}$ for each $\alpha < \beta \in \Lambda$.

Piotr Borodulin-Nadzieja

Motivation		Special and Hausdorff Gaps
Answer.		

pre-Definition: Hausdorff tower

A tower $(T_{\alpha})_{\alpha}$ is Hausdorff if (it contains a subtower (T'_{α}) such that) for each α and n

$$\{\beta < \alpha : T_{\beta} \setminus T_{\alpha} \subseteq n\}$$
 is finite.

Proposition

There is a Hausdorff tower. Each Hausdorff tower contains an uncountable *G*-antichain.

Winterschool 2013, Hejnice

Piotr Borodulin-Nadzieja

Motivation		Special and Hausdorff Gaps
Answer		

Definition: Hausdorff tower

A tower $(T_{\alpha})_{\alpha}$ is Hausdorff if (it contains a subtower (T'_{α}) such that) for each α and n

$$\{\beta < \alpha \colon T'_{\beta} \setminus T'_{\alpha} \subseteq n\}$$
 is finite.

Proposition

There is a Hausdorff tower. Each Hausdorff tower contains an uncountable \subseteq -antichain.

Winterschool 2013, Hejnice

Piotr Borodulin-Nadzieja

Motivation		Special and Hausdorff Gaps
Answer		

Definition: Hausdorff tower

A tower $(T_{\alpha})_{\alpha}$ is Hausdorff if (it contains a subtower (T'_{α}) such that) for each α and n

$$\{\beta < \alpha \colon T'_{\beta} \setminus T'_{\alpha} \subseteq n\}$$
 is finite.

Proposition

There is a Hausdorff tower. Each Hausdorff tower contains an uncountable \subseteq -antichain.

Winterschool 2013, Hejnice

Piotr Borodulin-Nadzieja

Motivation		

Question

Is there a tower without an uncountable \subseteq -antichain?

Theorem (Kunen, van Douwen, 1982)

 $CH \implies Yes.$

Piotr Borodulin-Nadzieja

Motivation		
	0	

Question

Is there a tower without an uncountable \subseteq -antichain?

Theorem (Kunen, van Douwen, 1982)

 $CH \implies Yes.$

U → < D → < E → < E → E → Q (> Winterschool 2013, Hejnice

Piotr Borodulin-Nadzieja

Basic definitions.

Definition: Hausdorff tower

A tower $(T_{\alpha})_{\alpha}$ is *Hausdorff* if (it contains a subtower (T'_{α}) such that) for each α and n

$$\{eta is finite.$$

Definition: Suslin tower

A tower $(T_{\alpha})_{\alpha}$ is *Suslin* if it does not contain an uncountable \subseteq -antichain.

Definition: special tower

A tower $(T_{\alpha})_{\alpha}$ is *special* if it is not Suslin.

Piotr Borodulin-Nadzieja

Hausdorff towers and gaps

Basic definitions.

Definition: Hausdorff tower

A tower $(T_{\alpha})_{\alpha}$ is *Hausdorff* if (it contains a subtower (T'_{α}) such that) for each α and n

$$\{eta is finite.$$

Definition: Suslin tower

A tower $(T_{\alpha})_{\alpha}$ is *Suslin* if it does not contain an uncountable \subseteq -antichain.

Definition: special tower

A tower $(T_{\alpha})_{\alpha}$ is *special* if it is not Suslin.

Piotr Borodulin-Nadzieja

Hausdorff towers and gaps

Basic definitions.

Definition: Hausdorff tower

A tower $(T_{\alpha})_{\alpha}$ is *Hausdorff* if (it contains a subtower (T'_{α}) such that) for each α and n

$$\{eta is finite.$$

Definition: Suslin tower

A tower $(T_{\alpha})_{\alpha}$ is *Suslin* if it does not contain an uncountable \subseteq -antichain.

Definition: special tower

A tower $(T_{\alpha})_{\alpha}$ is *special* if it is not Suslin.

Piotr Borodulin-Nadzieja

Hausdorff towers and gaps

Martin's Axiom (+ non-CH).

Proposition

 $MA(\omega_1) \implies$ each tower is Hausdorff.

Proposition

 $MA(\omega_1) \implies$ for each tower $(T_{\alpha})_{\alpha}$ there is a tower $(T'_{\alpha})_{\alpha}$ such that

$$|T_{\alpha} \setminus T'_{\alpha}| \le 1;$$

$$|T'_{\alpha} \setminus T_{\alpha}| \le 1;$$

$$(T'_{\alpha})_{\alpha} \text{ is a } \subseteq \text{-antichain.}$$

Piotr Borodulin-Nadzieja

Martin's Axiom (+ non-CH).

Proposition

$$MA(\omega_1) \implies$$
 each tower is Hausdorff.

Proposition

 $MA(\omega_1) \implies$ for each tower $(T_{\alpha})_{\alpha}$ there is a tower $(T'_{\alpha})_{\alpha}$ such that

$$|T_{\alpha} \setminus T'_{\alpha}| \le 1;$$

$$|T'_{\alpha} \setminus T_{\alpha}| \le 1;$$

$$(T'_{\alpha})_{\alpha} \text{ is a } \subseteq \text{-antichain.}$$

Piotr Borodulin-Nadzieja

Martin's Axiom (+ non-CH).

Proposition

 $MA(\omega_1) \implies$ each tower is Hausdorff.

Proposition

 $\mathsf{MA}(\omega_1) \implies$ for each tower $(T_{\alpha})_{\alpha}$ there is a tower $(T'_{\alpha})_{\alpha}$ such that

$$\begin{array}{l} \mid T_{\alpha} \setminus T'_{\alpha} \mid \leq 1; \\ \mid T'_{\alpha} \setminus T_{\alpha} \mid \leq 1; \\ \mid (T'_{\alpha})_{\alpha} \text{ is a } \subseteq \text{-antichain.} \end{array}$$

Piotr Borodulin-Nadzieja

Martin's Axiom (+ non-CH).

Proposition

 $MA(\omega_1) \implies$ each tower is Hausdorff.

Proposition

 $MA(\omega_1) \implies$ for each tower $(T_{\alpha})_{\alpha}$ there is a tower $(T'_{\alpha})_{\alpha}$ such that

$$|T_{\alpha} \setminus T'_{\alpha}| \le 1;$$

$$|T'_{\alpha} \setminus T_{\alpha}| \le 1;$$

$$(T'_{\alpha})_{\alpha} \text{ is a } \subseteq \text{-antichain.}$$

Piotr Borodulin-Nadzieja

Martin's Axiom (+ non-CH).

Proposition

 $MA(\omega_1) \implies$ each tower is Hausdorff.

Proposition

 $MA(\omega_1) \implies$ for each tower $(T_{\alpha})_{\alpha}$ there is a tower $(T'_{\alpha})_{\alpha}$ such that

$$\begin{array}{l} \mid T_{\alpha} \setminus T'_{\alpha} \mid \leq 1; \\ \mid T'_{\alpha} \setminus T_{\alpha} \mid \leq 1; \\ \mid (T'_{\alpha})_{\alpha} \text{ is a } \subseteq \text{-antichain.} \end{array}$$

Piotr Borodulin-Nadzieja

OCA and PID.

Proposition

 $OCA \implies$ each tower is special.

Theorem

Assume PID. Then each tower is Hausdorff if and only if $\mathfrak{b} > \omega_1$.

□ → < @ → < E → < E → E → O Q ↔ Winterschool 2013, Hejnice

Piotr Borodulin-Nadzieja

OCA and PID.

Proposition

 $\mathsf{OCA} \implies$ each tower is special.

Theorem

Assume PID. Then each tower is Hausdorff if and only if $\mathfrak{b} > \omega_1$.

Winterschool 2013, Hejnice

Piotr Borodulin-Nadzieja

OCA and PID.

Proposition

 $\mathsf{OCA} \implies$ each tower is special.

Theorem

Assume PID. Then each tower is Hausdorff if and only if $\mathfrak{b} > \omega_1$.

Winterschool 2013, Hejnice

Piotr Borodulin-Nadzieja

Proposition

There exists a Suslin tower of size \mathfrak{b} . Consistently, there is a Suslin tower of size less than \mathfrak{b} .

Theorem (Todorčević)

If a tower generates a non-meager ideal, then it is Suslin.

Winterschool 2013, Hejnice

Piotr Borodulin-Nadzieja

Proposition

There exists a Suslin tower of size \mathfrak{b} . Consistently, there is a Suslin tower of size less than \mathfrak{b} .

Theorem (Todorčević)

If a tower generates a non-meager ideal, then it is Suslin.

Piotr Borodulin-Nadzieja

Hausdorff towers and gaps

Proposition

There exists a Suslin tower of size \mathfrak{b} . Consistently, there is a Suslin tower of size less than \mathfrak{b} .

Theorem (Todorčević)

If a tower generates a non-meager ideal, then it is Suslin.

Piotr Borodulin-Nadzieja

Hausdorff towers and gaps

Proposition

There exists a Suslin tower of size \mathfrak{b} . Consistently, there is a Suslin tower of size less than \mathfrak{b} .

Theorem (Todorčević)

If a tower generates a non-meager ideal, then it is Suslin.

Piotr Borodulin-Nadzieja

Hausdorff towers and gaps

Suslin tower from a Cohen real.

Proposition

Let \mathbb{C} be the Cohen forcing and let $(T_{\alpha})_{\alpha}$ be a tower. Then

 $\Vdash_{\mathbb{C}} (\dot{c} \cap T_{\alpha})_{\alpha} \text{ is a Suslin tower.}$

Piotr Borodulin-Nadzieja

Hausdorff towers and gaps

$\blacksquare \Vdash_{\mathbb{C}} (\dot{c} \cap \mathcal{T}_{\alpha})_{\alpha} \text{ is a tower;}$

- Fix $p \in 2^n$;
- Let $\Vdash_{\mathbb{C}} \dot{X} \subseteq \omega_1$;
- WLOG, $X \in V$;
- Let $\alpha < \beta \in X$ such that $T_{\alpha} \cap n = T_{\beta} \cap n$;
- Let *m* be such that $T_{\alpha} \setminus T_{\beta} \subseteq m$;
- Let q|n = p and q(i) = 0 for each $i \in [n, m)$;
- $q \Vdash \dot{c} \cap T_{\alpha} \subseteq \dot{c} \cap T_{\beta}.$

Winterschool 2013, Hejnice

Suslin tower from a Cohen real - proof.

- $\Vdash_{\mathbb{C}} (\dot{c} \cap T_{\alpha})_{\alpha}$ is a tower;
- Fix $p \in 2^n$;
- Let $\Vdash_{\mathbb{C}} \dot{X} \subseteq \omega_1$;
- WLOG, $X \in V$;
- Let $\alpha < \beta \in X$ such that $T_{\alpha} \cap n = T_{\beta} \cap n$;
- Let *m* be such that $T_{\alpha} \setminus T_{\beta} \subseteq m$;
- Let q|n = p and q(i) = 0 for each $i \in [n, m)$;
- $q \Vdash \dot{c} \cap T_{\alpha} \subseteq \dot{c} \cap T_{\beta}.$

Piotr Borodulin-Nadzieja

Winterschool 2013, Hejnice

Suslin tower from a Cohen real - proof.

- $\Vdash_{\mathbb{C}} (\dot{c} \cap T_{\alpha})_{\alpha}$ is a tower;
- Fix $p \in 2^n$;
- Let $\Vdash_{\mathbb{C}} \dot{X} \subseteq \omega_1$;
- WLOG, $X \in V$;
- Let $\alpha < \beta \in X$ such that $T_{\alpha} \cap n = T_{\beta} \cap n$;
- Let *m* be such that $T_{\alpha} \setminus T_{\beta} \subseteq m$;
- Let q|n = p and q(i) = 0 for each $i \in [n, m)$;
- $q \Vdash \dot{c} \cap T_{\alpha} \subseteq \dot{c} \cap T_{\beta}.$

Piotr Borodulin-Nadzieja

- $\Vdash_{\mathbb{C}} (\dot{c} \cap T_{\alpha})_{\alpha}$ is a tower;
- Fix $p \in 2^n$;
- Let $\Vdash_{\mathbb{C}} \dot{X} \subseteq \omega_1$;
- WLOG, $X \in V$;
- Let $\alpha < \beta \in X$ such that $T_{\alpha} \cap n = T_{\beta} \cap n$;
- Let *m* be such that $T_{\alpha} \setminus T_{\beta} \subseteq m$;
- Let q|n = p and q(i) = 0 for each $i \in [n, m)$;
- $q \Vdash \dot{c} \cap T_{\alpha} \subseteq \dot{c} \cap T_{\beta}.$

Piotr Borodulin-Nadzieja

- $\Vdash_{\mathbb{C}} (\dot{c} \cap T_{\alpha})_{\alpha}$ is a tower;
- Fix $p \in 2^n$;
- Let $\Vdash_{\mathbb{C}} \dot{X} \subseteq \omega_1$;
- WLOG, $X \in V$;
- Let $\alpha < \beta \in X$ such that $T_{\alpha} \cap n = T_{\beta} \cap n$;
- Let m be such that $T_{lpha} \setminus T_{eta} \subseteq m$;
- Let q|n = p and q(i) = 0 for each $i \in [n, m)$;
- $q\Vdash \dot{c}\cap T_{\alpha}\subseteq \dot{c}\cap T_{\beta}.$

Piotr Borodulin-Nadzieja

- $\Vdash_{\mathbb{C}} (\dot{c} \cap T_{\alpha})_{\alpha}$ is a tower;
- Fix $p \in 2^n$;
- Let $\Vdash_{\mathbb{C}} \dot{X} \subseteq \omega_1$;
- WLOG, $X \in V$;
- Let $\alpha < \beta \in X$ such that $T_{\alpha} \cap n = T_{\beta} \cap n$;
- Let *m* be such that $T_{\alpha} \setminus T_{\beta} \subseteq m$;
- Let q|n = p and q(i) = 0 for each $i \in [n, m)$;
- $q \Vdash \dot{c} \cap T_{\alpha} \subseteq \dot{c} \cap T_{\beta}.$

Winterschool 2013, Hejnice

Suslin tower from a Cohen real - proof.

- $\Vdash_{\mathbb{C}} (\dot{c} \cap T_{\alpha})_{\alpha}$ is a tower;
- Fix $p \in 2^n$;
- Let $\Vdash_{\mathbb{C}} \dot{X} \subseteq \omega_1$;
- WLOG, $X \in V$;
- Let $\alpha < \beta \in X$ such that $T_{\alpha} \cap n = T_{\beta} \cap n$;
- Let *m* be such that $T_{\alpha} \setminus T_{\beta} \subseteq m$;
- Let q|n = p and q(i) = 0 for each $i \in [n, m)$;
- $q \Vdash \dot{c} \cap T_{\alpha} \subseteq \dot{c} \cap T_{\beta}.$

Piotr Borodulin-Nadzieja

- $\Vdash_{\mathbb{C}} (\dot{c} \cap T_{\alpha})_{\alpha}$ is a tower;
- Fix $p \in 2^n$;
- Let $\Vdash_{\mathbb{C}} \dot{X} \subseteq \omega_1$;
- WLOG, $X \in V$;
- Let $\alpha < \beta \in X$ such that $T_{\alpha} \cap n = T_{\beta} \cap n$;
- Let *m* be such that $T_{\alpha} \setminus T_{\beta} \subseteq m$;
- Let q|n = p and q(i) = 0 for each $i \in [n, m)$;
- $q \Vdash \dot{c} \cap T_{\alpha} \subseteq \dot{c} \cap T_{\beta}.$

		Special and Hausdorff Gaps
Special m	200	

A gap $(L_{\alpha}, R_{\alpha})_{\alpha}$ is *special* if there is an uncountable $X \subseteq \omega_1$ such that

$$(L_{\alpha} \cap R_{\beta}) \cup (L_{\beta} \cap R_{\alpha}) \neq \emptyset$$

for each $\alpha < \beta \in X$.

Oriented gap

A gap $(L_lpha,R_lpha)_lpha$ is *oriented* if there is an uncountable $X\subseteq \omega_1$ such that

$$L_{\alpha} \cap R_{\beta} \neq \emptyset$$

Winterschool 2013, Hejnice

for each $\alpha < \beta \in X$.

Piotr Borodulin-Nadzieja

		Special and Hausdorff Gaps
Charles and		

A gap $(L_{\alpha}, R_{\alpha})_{\alpha}$ is *special* if there is an uncountable $X \subseteq \omega_1$ such that

$$(L_{lpha}\cap R_{eta})\cup (L_{eta}\cap R_{lpha})
eq \emptyset$$

for each $\alpha < \beta \in X$.

Oriented gap

A gap $(L_{\alpha}, R_{\alpha})_{\alpha}$ is *oriented* if there is an uncountable $X \subseteq \omega_1$ such that

$$L_{\alpha} \cap R_{\beta} \neq \emptyset$$

for each $\alpha < \beta \in X$.

Piotr Borodulin-Nadzieja

Basic facts

notation: "Hausdorff" = "equivalent to Hausdorff";

- Hausdorff \implies oriented \implies special;
- If $(L_{\alpha}, R_{\alpha})_{\alpha}$ is Hausdorff, then $(L_{\alpha})_{\alpha}$ is Hausdorff;
- If $(L_{\alpha}, R_{\alpha})_{\alpha}$ is oriented, then $(L_{\alpha})_{\alpha}$ is special.

Questions - Scheepers (1993)

Is every oriented gap Hausdorff? Is every special gap oriented?

Piotr Borodulin-Nadzieja

Hausdorff towers and gaps

Basic facts

- notation: "Hausdorff" = "equivalent to Hausdorff";
- Hausdorff \implies oriented \implies special;
- If $(L_{\alpha}, R_{\alpha})_{\alpha}$ is Hausdorff, then $(L_{\alpha})_{\alpha}$ is Hausdorff;
- If $(L_{\alpha}, R_{\alpha})_{\alpha}$ is oriented, then $(L_{\alpha})_{\alpha}$ is special.

Questions - Scheepers (1993)

Is every oriented gap Hausdorff? Is every special gap oriented?

Piotr Borodulin-Nadzieja

Basic facts

- notation: "Hausdorff" = "equivalent to Hausdorff";
- Hausdorff \implies oriented \implies special;
- If $(L_{\alpha}, R_{\alpha})_{\alpha}$ is Hausdorff, then $(L_{\alpha})_{\alpha}$ is Hausdorff;
- If $(L_{lpha},R_{lpha})_{lpha}$ is oriented, then $(L_{lpha})_{lpha}$ is special.

Questions - Scheepers (1993)

Is every oriented gap Hausdorff? Is every special gap oriented?

Piotr Borodulin-Nadzieja

Hausdorff towers and gaps

Basic facts

- notation: "Hausdorff" = "equivalent to Hausdorff";
- Hausdorff \implies oriented \implies special;
- If $(L_{\alpha}, R_{\alpha})_{\alpha}$ is Hausdorff, then $(L_{\alpha})_{\alpha}$ is Hausdorff;
- If $(L_{\alpha}, R_{\alpha})_{\alpha}$ is oriented, then $(L_{\alpha})_{\alpha}$ is special.

Questions - Scheepers (1993)

Is every oriented gap Hausdorff? Is every special gap oriented?

Piotr Borodulin-Nadzieja

Hausdorff towers and gaps

Basic facts

- notation: "Hausdorff" = "equivalent to Hausdorff";
- Hausdorff \implies oriented \implies special;
- If $(L_{\alpha}, R_{\alpha})_{\alpha}$ is Hausdorff, then $(L_{\alpha})_{\alpha}$ is Hausdorff;
- If $(L_{\alpha}, R_{\alpha})_{\alpha}$ is oriented, then $(L_{\alpha})_{\alpha}$ is special.

Questions - Scheepers (1993)

Is every oriented gap Hausdorff? Is every special gap oriented?

Piotr Borodulin-Nadzieja

Hausdorff towers and gaps

Questions - Scheepers (1993)

Is every oriented gap Hausdorff? Is every special gap oriented?

Theorem - Hirschorn (2008)

Consistently, there is an oriented but non-Hausdorff gap.

Theorem

Consistently, there is a special gap which is not oriented.

Piotr Borodulin-Nadzieja

Hausdorff towers and gaps

Questions - Scheepers (1993)

Is every oriented gap Hausdorff? Is every special gap oriented?

Theorem - Hirschorn (2008)

Consistently, there is an oriented but non-Hausdorff gap.

Theorem

Consistently, there is a special gap which is not oriented.

Piotr Borodulin-Nadzieja

Hausdorff towers and gaps

Questions - Scheepers (1993)

Is every oriented gap Hausdorff? Is every special gap oriented?

Theorem - Hirschorn (2008)

Consistently, there is an oriented but non-Hausdorff gap.

Theorem

Consistently, there is a special gap which is not oriented.

Winterschool 2013, Hejnice

Piotr Borodulin-Nadzieja

• Let $(T_{\alpha})_{\alpha}$ be a Suslin tower.

(Spasojević, 1996) There is a *σ*-centered forcing ℙ and a ℙ-name (*L*_α)_α for a tower such that

 $\Vdash_{\mathbb{P}} (\dot{L}_{\alpha}, \mathcal{T}_{\alpha})_{\alpha}$ is an oriented gap.

- Consider $(T_{\alpha}, \dot{L}_{\alpha})_{\alpha}$. It is still **special** in $V^{\mathbb{P}}$.
- $\Vdash_{\mathbb{P}}$ " $(T_{\alpha})_{\alpha}$ is Suslin", since σ -centered forcings cannot destroy ccc.
- Therefore, $(T_{\alpha}, \dot{L}_{\alpha})_{\alpha}$ is **not oriented**.

- Let $(T_{\alpha})_{\alpha}$ be a Suslin tower.
- (Spasojević, 1996) There is a σ -centered forcing \mathbb{P} and a \mathbb{P} -name $(\dot{L}_{\alpha})_{\alpha}$ for a tower such that

 $\Vdash_{\mathbb{P}} (\dot{L}_{\alpha}, \mathcal{T}_{\alpha})_{\alpha}$ is an oriented gap.

- Consider $(T_{lpha},\dot{L}_{lpha})_{lpha}$. It is still **special** in $V^{\mathbb{P}}$.
- $\Vdash_{\mathbb{P}}$ " $(T_{\alpha})_{\alpha}$ is Suslin", since σ -centered forcings cannot destroy ccc.
- Therefore, $(T_{\alpha}, \dot{L}_{\alpha})_{\alpha}$ is **not oriented**.

- Let $(T_{\alpha})_{\alpha}$ be a Suslin tower.
- (Spasojević, 1996) There is a σ -centered forcing \mathbb{P} and a \mathbb{P} -name $(\dot{L}_{\alpha})_{\alpha}$ for a tower such that

 $\Vdash_{\mathbb{P}} (\dot{L}_{\alpha}, \mathcal{T}_{\alpha})_{\alpha}$ is an oriented gap.

- Consider $(T_{\alpha}, \dot{L}_{\alpha})_{\alpha}$. It is still **special** in $V^{\mathbb{P}}$.
- $\Vdash_{\mathbb{P}}$ " $(T_{\alpha})_{\alpha}$ is Suslin", since σ -centered forcings cannot destroy ccc.
- Therefore, $(T_{\alpha}, \dot{L}_{\alpha})_{\alpha}$ is **not oriented**.

- Let $(T_{\alpha})_{\alpha}$ be a Suslin tower.
- (Spasojević, 1996) There is a σ -centered forcing \mathbb{P} and a \mathbb{P} -name $(\dot{L}_{\alpha})_{\alpha}$ for a tower such that

 $\Vdash_{\mathbb{P}} (\dot{L}_{\alpha}, \mathcal{T}_{\alpha})_{\alpha}$ is an oriented gap.

- Consider $(\mathcal{T}_{\alpha}, \dot{\mathcal{L}}_{\alpha})_{\alpha}$. It is still **special** in $V^{\mathbb{P}}$.
- I⊢_P "(T_α)_α is Suslin ", since σ-centered forcings cannot destroy ccc.
- Therefore, $(T_{\alpha}, \dot{L}_{\alpha})_{\alpha}$ is **not oriented**.

- Let $(T_{\alpha})_{\alpha}$ be a Suslin tower.
- (Spasojević, 1996) There is a σ -centered forcing \mathbb{P} and a \mathbb{P} -name $(\dot{L}_{\alpha})_{\alpha}$ for a tower such that

 $\Vdash_{\mathbb{P}} (\dot{L}_{\alpha}, \mathcal{T}_{\alpha})_{\alpha}$ is an oriented gap.

- Consider $(T_{\alpha}, \dot{L}_{\alpha})_{\alpha}$. It is still **special** in $V^{\mathbb{P}}$.
- I⊢_P "(T_α)_α is Suslin ", since σ-centered forcings cannot destroy ccc.
- Therefore, $(T_{\alpha}, \dot{L}_{\alpha})_{\alpha}$ is **not oriented**.

A surprise:

 $\Vdash_{\mathbb{P}} (\dot{L}_{\alpha})_{\alpha}$ is not a Hausdorff tower.

Therefore

 $\Vdash_{\mathbb{P}} (\dot{L}_{\alpha}, T_{\alpha})_{\alpha}$ is oriented, not Hausdorff.

And

 $\vdash_{\mathbb{P}} (T_{\alpha}, \dot{L}_{\alpha})_{\alpha}$ is special, not oriented.

Piotr Borodulin-Nadzieja

Hausdorff towers and gaps

A surprise:

$\Vdash_{\mathbb{P}} (\dot{L}_{\alpha})_{\alpha}$ is not a Hausdorff tower.

Therefore

$\Vdash_{\mathbb{P}} (\dot{L}_{\alpha}, \mathcal{T}_{\alpha})_{\alpha}$ is oriented, not Hausdorff.

And

 $\Vdash_{\mathbb{P}} (\mathcal{T}_{lpha},\dot{L}_{lpha})_{lpha}$ is special, not oriented.

Piotr Borodulin-Nadzieja

Hausdorff towers and gaps

A surprise:

 $\Vdash_{\mathbb{P}} (\dot{L}_{\alpha})_{\alpha}$ is not a Hausdorff tower.

Therefore

$\Vdash_{\mathbb{P}} (\dot{L}_{lpha}, \mathcal{T}_{lpha})_{lpha}$ is oriented, not Hausdorff.

And

 $\vdash_{\mathbb{P}} (T_{\alpha}, \dot{L}_{\alpha})_{\alpha}$ is special, not oriented.

Piotr Borodulin-Nadzieja

Hausdorff towers and gaps

A surprise:

$$\Vdash_{\mathbb{P}} (\dot{L}_{\alpha})_{\alpha}$$
 is not a Hausdorff tower.

Therefore

$$\Vdash_{\mathbb{P}} (\dot{L}_{\alpha}, \mathcal{T}_{\alpha})_{\alpha}$$
 is oriented, not Hausdorff.

And

$$\Vdash_{\mathbb{P}} (\mathcal{T}_{\alpha}, \dot{\mathcal{L}}_{\alpha})_{\alpha}$$
 is special, not oriented.

Piotr Borodulin-Nadzieja

Hausdorff towers and gaps

Special non-Hausdorff tower.

Corollary

Consistently, there is a special tower which is not Hausdorff.

Theorem

If $(T_{\alpha})_{\alpha}$, $(T'_{\alpha})_{\alpha}$ generates the same ideal, and $(T_{\alpha})_{\alpha}$ is Hausdorff, then $(T'_{\alpha})_{\alpha}$ is Hausdorff.

 Consistently, there is a special tower and a Suslin tower generating the same ideal.

Piotr Borodulin-Nadzieja

Hausdorff towers and gaps

Special non-Hausdorff tower.

Corollary

Consistently, there is a special tower which is not Hausdorff.

Theorem

- If $(T_{\alpha})_{\alpha}$, $(T'_{\alpha})_{\alpha}$ generates the same ideal, and $(T_{\alpha})_{\alpha}$ is Hausdorff, then $(T'_{\alpha})_{\alpha}$ is Hausdorff.
- Consistently, there is a special tower and a Suslin tower generating the same ideal.

Piotr Borodulin-Nadzieja

Hausdorff towers and gaps

Special non-Hausdorff tower.

Corollary

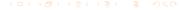
Consistently, there is a special tower which is not Hausdorff.

Theorem

- If $(T_{\alpha})_{\alpha}$, $(T'_{\alpha})_{\alpha}$ generates the same ideal, and $(T_{\alpha})_{\alpha}$ is Hausdorff, then $(T'_{\alpha})_{\alpha}$ is Hausdorff.
- Consistently, there is a special tower and a Suslin tower generating the same ideal.

Special and Hausdorff Gaps

Acknowledgements: INFTY Network.



Winterschool 2013, Hejnice

Piotr Borodulin-Nadzieja

Acknowledgements: Fields Institute.

Figure: CN tower

Winterschool 2013, Hejnice

Piotr Borodulin-Nadzieja